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Abstract

Even moderate distortion at the beginning of the NMR signal contributes significantly to the baseline in the reciprocal domain,
when the FID-type experiment is considered. If constant phase artifact is also involved, the net problem cannot be resolved accu-
rately, according to its constituents considered in separation. This issue is particularly severe for powder patterns in solids, featuring
complex broadband spectra, which substantially mask the baseline behavior. The complete correction procedure should intrinsically
deal with both artifacts, due to the mutual dependency. The aim of this work is to indicate the possibility for the exact treatment of
baseline and constant phase artifacts together, providing precise measure whether the correction is successful. We have found the
analytical, noniterative solution for this coupled problem in the closed form. In this paper, we introduce the correction efficiency
concept in order to have the measure for the correction reliability of the resulting spectrum. Relevant efficiency parameter g is
the subject for quantitative analysis resulting in certain constraints for the measurement. We have determined exemplar trends
for this parameter as a function of experimental variables such as signal-to-noise ratio and missing points number. The method
is model-free and drawn from the origin of the baseline artifact; therefore has potential to work for a broad range of applications.
� 2005 Elsevier Inc. All rights reserved.
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1. Introduction

The real part of the experimental spectrum depicted
in Fig. 1A represents our baseline problem [1]. Such a
baseline is heavily distorted; its curvature is large and
occupies that substantial part in the middle of the band-
width where the spectral lines are present. Moreover, de-
picted spectrum is very broad, complex, and masks the
actual behavior of the baseline in the relevant region.
In such a case, the knowledge about the lineshape would
be certainly useful for the baseline correction; unfortu-
nately it is the task on its own and mostly the actual re-
sult of the subsequent analysis. Elementary requirement
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to study this complex lineshape, however, is to have the
baseline already corrected. This mutual dependency in
the spectral region makes it virtually impossible to deal
with the lineshape analysis and the baseline correction
both simultaneously and successfully. Corrected spec-
trum in Fig. 1B reveals its actual structure, which makes
this issue easier to realize. This spectrum is the result of
the correction method being the subject of this paper; in
this point represents the desired target, which in com-
parison to Fig. 1A, makes the task and its difficulty
established.

The following considerations apply to the correction
issue of missing points and the constant phase present in
NMR experiments, such as the Free Induction Decay,
where the maximum of the signal builds up at the begin-
ning of the timescale. The two artifacts are mutually
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Fig. 1. (A) Experimental powder pattern as the result of missing four
points in the time domain with constant phase artifact present. (B) The
same data after successful correction using presented method. Correc-
tion enables both qualitative and quantitative analysis (B): several
isotopomers in partially deuterated (30%) NH4ClO4 compound
contribute to overall dynamics; relevant contributions (dashed lines)
were obtained by fitting parameters of the process to the experimental
data (solid line). Depicted only real parts of complex spectra, 2 ls
dwell time [1].
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dependent, and the net correction problem cannot be re-
solved accurately according to its constituents consid-
ered in separation. Ernst [2] noticed this difficulty very
early in his work in 1968 devoted to phase correction.
Since that time, the complex problem has not been re-
solved accurately for arbitrary number of points. Exist-
ing methods deal with the only one of the two artifacts
at the time, usually assuming the other artifact is not
present or corrected somehow. Zhu and Ad Bax in their
papers [3–5] successfully analyze the problem for the
phase and the only one point missing, using Linear Pre-
diction method.

Because of the lineshape, which is a priori unknown,
the model-dependent approach, such as Linear
Prediction, cannot be used in this case. The simplest
model-free method is the running average. It represents
low-pass, finite-response, causal filter and is the particu-
lar instance of so-called Savitzky-Golayi smoothing fil-
ter [6]. When data has nonzero second derivative, such
a filter reduces data value at the local maximum,
depending on the local linewidth. If linewidths in the
spectrum are narrower than the filter width, they can
be removed by filtering. Pure and smooth baseline is
obtained as the residue, which in turn might be sub-
tracted from the actual spectrum making the problem
resolved. In order for this approach to work, however,
it must be both the filter width and the linewidths much
narrower than the spectrum bandwidth. As it is clear
both from Fig. 1 and the discussion, this is not our case,
and such a method cannot be used either.

Let us summarize constitutive features for the meth-
od presented in this paper as well as the experimental
motivation standing in the background.

(a) Constant phase artifact. We focus on the constant
phase artifact, which is inevitable part of the exper-
iment when the signal-to-noise ratio is small or usual
phase cycling does not solve the problem. Fourier
transformation of the signal is very sensitive to miss-
ing points coupled to even very small constant phase
mismatch. This makes data interpretation difficult,
especially for broad spectra such as in Fig. 1. Our
approach assumes there do exist efficient methods
for adjusting zero-time experimentally (as we know
from practice) and this justifies neglecting of the lin-
ear phase artifact in the following considerations.

(b) Arbitrary number of missing points. To provide a suf-
ficient bandwidth for broad spectra we need to set
our dwell time sufficiently short. For the established
dead time, as the result of hardware limitations, this
constraint inevitably results in the increased missing
points number, when the larger bandwidth is
required. In the following, this number is considered
as arbitrary, even though in our practice it does not
exceed 10 points for complex spectrum (20 real
unknowns).

(c) Model-free approach. Linear prediction implicitly
assumes Lorentzian lineshape model (series of
damped sinusoids in the time domain) and cannot
be used successfully for arbitrary spectrum. In par-
ticular, it is obvious that for data in Fig. 1 (which
is our prototypical case) this assumption is dramat-
ically inadequate. The lineshape might also evolve
with the temperature, which inclines towards a mod-
el-free approach further.

This preliminary consideration makes it clear that the
strict formula describing artifact is needed, which would
be formal starting point for the following correction
method. Such an exact formula originates in properties
of Discrete Fourier Transform and is presented below.
2. The dead time and DFT origin of the baseline

The NMR signal f (t) from the probe is usually
distorted at the beginning of the timescale t = 0. The
reason for this is finite pulse width, probe ringing, and
oscillating contribution from audio filters [7]. These is-
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sues are intrinsic limitations for a spectrometer, making
expected signal s (t) distorted by b (t) component. Func-
tion b (t) is different from zero in the range t 2 [0, td] and
identically zero otherwise (Fig. 2B). More detailed
discussion on b (t) origin and the physical nature of
the distortion is not relevant to the following sections;
it is enough to assume the td as short enough as com-
pared to the total signal length.

However, even very short td, for example a few
microseconds, might seriously influence analysis, as it
is presented in Fig. 1. This local distortion b (t) in the
time domain is translated by Fourier transform into glo-
bal, significantly varying function B (m) in the frequency
domain. Such a function is distributed over the entire
bandwidth (Fig. 2A), which is the important difference
as compared to local behavior of b (t) in time (Fig.
2B). This function we call the baseline. According to
the linearity of Fourier transformation, the distortion
B (m) is related to distorted and undistorted spectra in
the same linear way as b (t) to respective f and s signals:

sðtÞ ¼ f ðtÞ � bðtÞ;

SðmÞ ¼ F ðmÞ � BðmÞ: ð1Þ
Since b (t) is rapidly quenched, and hence for t > td is
b (t) ” 0, the respective Fourier series is shortened to
the number of complex components equal the number
of missing points nd:
Fig. 2. (A) Distorted spectrum F (m) as the sum of the background
function B (m) and undistorted spectrum S (m): F (m) = S (m) + B (m). (B)
Similar relationship holds for the same data depicted in the time
domain: distorted signal f (t) is the sum of the background b (t) and
undistorted signal s (t): f (t) = s (t) + b (t). All relationships concern
complex quantities, for simplicity only real parts are sketched. The
number of distorted complex points within dead-time td is nd = 4.
BðmÞ ¼
XN
k¼0

bðtkÞe�2pimkD

¼
Xnd
k¼0

bke�2pimkD þ
XN

k¼ndþ1

bke�2pimkD

¼
Xnd
k¼0

bke�2pimkD: ð2Þ

Expression (2) is general and exact formula for the
baseline B (m) as the series of complex exponents,
weighted by complex and unknown corrections to the
signal bk from the time domain. These unknowns are re-
lated through Eq. (1) to registered and expected signals
within [0, td] range. This type of distortion is the most
pronounced for FID-based techniques, when the maxi-
mum of the signal concentrates close to t = 0. Spin-echo
technique minimizes this effect; the signal starts far from
the beginning of the timescale and distortion does not
matter effectively.

In this paper, we assume the case in which the FID
measurement is the best choice for experimental investiga-
tion, such as for solids with very short relaxation times T �

2.
In such a case finding undistorted values s (t) within [0, td]
partition is vital for any subsequent analysis.

Values bk in Eq. (2), representing corrections for reg-
istered signal samples fk, are involved as unknowns for
the correction process in the following considerations.
3. Existing correction schemes

A class of methods making use of Eq. (1) operates in
the frequency domain,modeling the baselineB (m) as some
smooth function, preferably characterized by small
parameter set {pi}. That is, B = B (m,pi), similar to Bern-
stein polynomials in [8]. Baseline B (m,pi) can be fitted to
the F (m) spectrum with appropriate {pi} and subtracted
according to Eq. (1) afterwards. These very direct ap-
proaches might be inadequate for broad lines (Fig. 1)
where the region occupied by the spectrum is large and
there is no base for any assumptions aboutB (m,pi) behav-
ior. Most importantly, these approaches can at best be
approximations for the generic form of the baseline in
Eq. (2); therefore we reject them as secondary.

Another set of methods is characterized by their impli-
cit or explicit assumption about the lineshape. Linear pre-
diction by singular value decomposition (LPSVD) is the
example [9–11] for the Lorentzian lineshape. Procedure
is based on modeling data as the series of damped har-
monics in the time domain. Each processed data point
can be expressed as a weighted sum over some number
of consecutive points. This leads to the construction of
data matrix [10] and therefore to linear problem, being re-
solvedwith the SVD algorithm. Themethodworks fine as
long as data can be considered as Lorentzians in the fre-
quency domain. As mentioned earlier, this constraint is
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not acceptable for the case depicted in Fig. 1, which is fre-
quent for powder patterns in solids.

There are also iterative approaches based on maxi-
mum-entropy principle, like MEM [13–15]. The goal is
to maximize certain functional there, according to con-
straints introduced by Fourier transformation and
experimental noise. The solution is obtained iteratively,
so the aspect of both convergence and the initial guess
must be taken into account. It is also recommended to
make the resolution enhancement prior to correction
there, as well as to estimate first data points by other
methods [12]. Hence, the method is not self-contained
or firmly stable and therefore cannot work for us either.

Golotvin and Williams [16] proposed the procedure,
which is the variation of the averaging scheme discussed
earlier, and for the similar reason cannot be applied suc-
cessfully to our data. Their approach works sufficiently
well for narrow lines though.

For the method proposed in this paper, particularly
important is the class of so-called model-free ap-
proaches. Heuer and Haeberlen published in 1989 the
prototypical paper in this field [12], and we believe that
it was, conceptually, the starting point for any model-
free approach, including recent ones [17–19]. Their
paper contains the pioneering idea to use the informa-
tion from the outside of the spectral region (we call this
region X) in order to formulate the criterion for the
solution. For the real spectrum it is presumed that there
are no spectral lines or their remainders present in this
region. That allows for the formulation of the linear
equation set for missing points in the time domain.
Noise inclusion makes existing equations to hold only
approximately; therefore the problem is solved in the
least squares sense, preserving linear character of the
task. In this original formulation the paper does not ad-
dress the constant phase problem, as well as does not
propose convincing criterion for the success or the fail-
ure for the method itself. Furthermore, the method
(BCF, Baseline Cosine Fitting) works for symmetric
spectra only; general solution requires also combina-
tions of sin functions.

In this work, we use the concept of the principle mini-
mum, where the aspect of the noise is naturally self-
contained. This allows for direct formulation of the
appropriate equations set without any idealization for
the problem. Still holds the assumption due to the X re-
gion, where it is expected to have no spectral lines present.
Furthermore, this approach is easily generalized for the
case with the phase artifact included. We address also
the correction efficiency issue, as a quite separate concept.
Fig. 3. True signal s within deadtime td is distorted and resulting signal
f does not reflect original energy balance. Efficiency of the correction
might be considered as the relationship between the energy D,
attributed to the original undistorted points within time td, and the
error dD dependent on the correction method.
4. Correction efficiency parameter g

The problem of the correction efficiency (let us call it
g) concerns any correction scheme and it is convenient
to consider this measure as universal concept. Note, that
in order to get the measure of correction reliability it is
not sufficient to analyze the error of the solution as the
result of the input perturbation (noise). There are shown
relevant examples in this paper (have a look forward in
Fig. 5) making it clear, that raw error does not represent
the actual reliability for the correction process: the base-
line is likely corrected and the relevant error is very
small; lineshape, however, might be hopelessly distorted
by our correction instead. Solution error cannot reflect
this phenomenon, because the actual signal (as it is for
model-free approach) is not present in the constitutive
principle for the solution. The method based on the fre-
quency regions X with no spectral lines present does not
explicitly refer to the signal.

The issue of the solution reliability is frequently men-
tioned in other papers in the context of instability or
method convergence. However, even for perfectly con-
vergent methods as based on closed expressions [17,18]
the problem of the line distortion after correction re-
mains valid, since, as pointed out, its origin is located
outside of the correction method. One of the aspects is
the propagation of the noise-induced perturbation
across the linear or quasi-linear equations system. Even
more important is that raw error db does not carry any
information about the physical reliability. What it de-
scribes this is only how well the initial criterion is ful-
filled, namely how well corrected data approximate
zero in X regions. In these regions there is no represen-
tation of the signal.

Therefore we have to supply physically motivated
definition for the correction efficiency g, combining
explicitly the solution error with the signal.

We derive such an expression from the first premises,
such as energy balance principle. The original energy E

of the system in the experiment is disturbed within td
time (Fig. 3) and can be expressed as:
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E ¼ Dþ E; ð3Þ
where

D ¼
Z td

0

jsðtÞj2 dt and E ¼
Z T

td

jsðtÞj2 dt

¼
Z T

td

jf ðtÞj2 dt: ð4Þ

By means of D parameter in Eq. (3) we ask how much en-

ergy is missing as compared to the true energy E. Quan-
tity D = D(bm) depends on both bm corrections and the
signal f, due to Eqs. (1) and (4). It can be shown (see
Appendix A) that above premises lead to the following
definition for the correction efficiency:

g ¼ 1� dD
D

����
����: ð5Þ

Let us repeat that g is the measure for the physical reli-
ability of the resulting spectrum. In the same time,
dD (bm) is related to the correction procedure error
through bm parameters directly. Both D and dD com-
bine the solution error with the signal itself, fulfilling
earlier postulate. Efficiency is independent of both total
points number involved and the sampling rate. This is
correct, as missing energy depends on the dead time
value td in physical units. Extending the measurement
time beyond the signal lifetime should not change
the signal energy E significantly, except the noise
contribution.

Furthermore, the same consideration (see Appendix
A) leads to the conclusion about the legal range for
the efficiency g. Providing we wish to stay with our esti-
mation within one standard deviation confidence range,
the relevant constraint for g is:

0 < g < 1: ð6Þ
Note that values less than zero, although formally avail-
able by means of Eq. (5), are explicitly excluded by Eq.
(6). The same concerns the higher confidence level, for
three standard deviations, where one obtains even more
demanding requirement for the efficiency:

1

3
< g < 1: ð7Þ

Thus, reasonable values for the efficiency parameter g
vary form zero to 100%. Formulas for quantities D
and dD originating in particular correction method,
make it straightforward to determine g value.
5. The primary principle choice

To obtain desired corrections bk we should supply
some fundamental criterion for the method. In this sec-
tion, we show the advantage of the particular choice,
which will be our primary principle in the following
considerations. Our choice is compared to the principle
presented by Kuethe et al. [18,20] and we start with that
one as first.

The principle-minimum can be arbitrarily chosen as to
minimize the energy in the frequency region X where
there are no spectral lines present:

d IðbÞ ¼
Z
X
fSðm; bÞg2 dm

� �
¼ 0: ð8Þ

Note that Eq. (8) concerns both real and imaginary spec-
trum, and that X region choice is the intrinsic part of
this principle. For a discrete case we have:

Sm ¼ F m �
Xnd�1

n¼0

bnenm ; where enm ¼ e�2pinm=N

¼ ðenmÞ� and n 2 ½0; nd � 1�: ð9Þ

The summation goes over frequency region X in terms
of the respective chain of indexes. Subsequent minimiza-
tion over the real and imaginary parts for the baseline
points bm, leads to linear equations:

Xnd�1

m¼0

bmAn
m ¼

X
m2X

F me
nm; ð10Þ

where An
m ¼

P
m2Xemme

nm.
Spectrum F and chosen X partitioning in frequency

are sufficient together to resolve above set of equations.
The method originating in Eq. (8) yields corrected
spectrum in Fig. 4C. That result shows obvious dis-
crepancy as compared to original and undistorted sim-
ulation (Fig. 4A). For the Gaussian line, absorption
mode vanishes rapidly as expected, what is not true
for the dispersion data. This fact violates the initial
assumption, concerning also the dispersion mode in X
region, and produces the result that is far from true
lineshape.

Instead of minimizing the norm of the spectrum, we
can minimize the square of the real part only:

d IðbÞ ¼
Z
X
fSRðm; bÞg2 dm

� �
¼ 0: ð11Þ

Eq. (11) yields the linear equations system for the base-
line points (for details, see Appendix A) independent of
the imaginary part F I:X2nd�1

m¼0

xmAn
m ¼

X
m2X

F R
m a

nm; ð12Þ

where FR is real spectrum taken in X frequency regions,
defined earlier. Variables xm are real numbers, represent-
ing real and imaginary parts of the baseline, aligned
alternately as one vector (2nd real components) for
nd missing points. Constants An

m and amn depend on
harmanic functions:

An
m ¼

X
m2X

amnamm;



f d

Fig. 4. Simulated noiseless spectra show the sensitivity to the principal
criterion choice. Depicted both real and imaginary parts (solid and
dashed lines, respectively). (A) Phase-sensitive reference spectrum. (B)
First four complex points missing in the reference FID and the
resulting distorted spectrum, (C) Distortion corrected by method I, (D)
Distortion corrected by method II. Both methods minimize different
functional in selected spectral regions. Method II results in remarkable
agreement with the reference spectrum (A). The exemplar subspace X
consists of two partitions: X = [0,0.25] [ [0.75,1].

Fig. 5. Parameter g decreases due to signal to noise ratio decrease. The
dashed line denotes the undistorted spectrum. The same synthetic
spectrum, distortion and X subspace as in Fig. 4. Both visual
inspection and numerical values confirm the usefulness of the
parameter g as the measure for the correction efficiency.
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anm ¼
n is even : cos/

otherwise : sin/

�
;/¼ 2pm

n� 1

N
;N � total data number:

Operation (n � 1) stands for integer division by 2.
Note, that despite primary principle concerns only

real spectrum, both real and imaginary parts of missing
points can be determined by means of Eq. (12) in the
time domain.

The resulting correction (Fig. 4D) is successful, be-
cause the particular principle expressed in Eq. (11) is
not violated this time, as it is the case for the same spec-
trum and Eq. (8).

We conclude that for broad lines and phase sensitive
spectrum, criterion based solely on the absorption data
(Fig. 4D) is advantageous over norm minimization
(Fig. 4C). Both make use of the information taken from
the outside of the spectral region. The first one takes
only real part of the spectrum to calculate both real
and imaginary parts of the baseline, while the norm ap-
proach includes also imaginary data for this purpose. In
practice, it is nearly impossible to satisfy this version of
the primary principle that requires imaginary spectrum
to be close to zero within chosen regions X. The
correction along the complex norm makes imaginary
data artificially minimized in those regions, which in
turn makes the real part incorrect as well. The method
considered in this paper is far more successful in this
point (Fig. 4D), because its primary principle concerns
more liberal assumptions due to imaginary spectrum.
6. Correction efficiency analysis

The solution of the linear system always exists if
det (A) „ 0 in Eq. (12). Moreover, matrix A is indepen-
dent of the experimental spectrum F, therefore it guar-
antees that the problem is always well-posed, without
any computational singularities. In the following we dis-
cuss the error introduced solely by the experimental data
and how it is reflected by correction efficiency g.

By means of Eq. (12) we can find quantities D (bm),
dD (bm) relevant for the parameter g (see Appendix A).
Efficiency g is general measure for the baseline correction
with respect to some experimental variables:

g ¼ gðr ; n ;XÞ: ð13Þ



Fig. 6. Efficiency parameter g is the function dependent on signal to
noise ratio. The necessity for signal to noise improvement is limited by
certain s/n value, dependent on the missing points number in the
measurement. Since the dead time in the spectrometer is known, the
above trend is the guideline for estimation which level of the signal to

noise ratio is suitable for particular measurement.

Fig. 7. Baseline correction efficiency g is dependent on the chosen X
region length, depicted by rectangles. In the measurement, in order for
subsequent correction to work, we need to set appropriate dwell time,
making the X region large enough in frequency domain.
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At the moment we do not see the way how to perform
symbolic analysis of the function in Eq. (13) due to deep
embroilment of {rf,nd,X} variables in the solution. Nev-
eretheless, its character can be examined numerically.
This in turn, makes the analysis exemplar by nature,
however, we may expect that obtained trends still hold
in general.

6.1. Correction efficiency dependence on s/n

Simulated data depicted on Fig. 5 illustrate the
change in the efficiency parameter g according to sig-
nal to noise ratio decrease. Correction procedure was
performed each time for the same spectral lineshape,
modified with different amount of the noise admixture.
Each time the same four points were distorted in the
time domain, resulting in similar distortion in fre-
quency, to keep all aspects of this simulation repeti-
tive, except for the noise level. This process was
repeated for s/n ratio, ranging from 4 to 100. Results
depicted in Fig. 5 shows that efficiency g decreases
according to signal to noise ratio decrease. It is not
surprising result, neveretheless this is the indication
that parameter g is a good representation for the cor-
rection measure. Visual inspection stays in agreement
with numerical values as the indepentent confirmation.
The result formulates the requirement for sufficient s/n
level in the experiment, to have subsequent correction
successfully accomplished.

We have obtained efficiency g as the function of sig-
nal-to-noise ratio (s/n) for several values of missing
points number (Fig. 6). It is interesting that function g
has visible plateau starting from certain value of s/n ra-
tio. It makes clear that there is no much sense to increase
s/n ratio over certain limit, since it does not make any
improvement for the correction. As it is seen form Fig.
6, for missing points number nd = 2 this limit is s/
n = 20 and for nd = 4 this is s/n = 400. Since we know
the dead time in our spectrometer, the guidelines for
estimation which level of the signal-to-noise ratio is suit-

able for us, might be useful. We remember, however,
that g is a function of several variables, which all matter
in this calculation.

6.2. Correction efficiency dependence on X region

The choice for the X region, where there are no spec-
tral lines present, is the intrinsic part of the method. In
particular, what matters for the correction efficiency g, is
total length of this region. Simulation in Fig. 7 was per-
formed as a function of decreasing X region length, each
time for the same spectral lineshape, number of missing
points and the same noise level. It shows that efficiency
parameter is very sensitive to the length of the X region,
and decreases substantially when that length is de-
creased. In this point we draw the conclusion for the



Fig. 8. The increase of the relative X length results in rapid correction
efficiency increase. The trend is shown for several values of missing
points nd. The result makes it visible the similar plateau as for the
dependence on the noise level. There is no significant efficiency
improvement above the limit existing for the given number of missing
points nd.

Fig. 9. Correction efficiency as a function of the X region distribution.
It is much better efficiency (g = 93%) whenever we deal with well-
defined peaks uniformly distributed across the spectrum (B). In the
case of powder pattern in solids (A), correction fails (compare the
dashed line) and efficiency parameter g stays outside of any confidence
range (g < 0). This is despite the same s/n ratio in both cases and the
same X region length.
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measurement, that the X region has to be a sufficiently
large portion of our spectral band. Otherwise we might
have problems with our correction, as it is depicted in
Fig. 7. This issue (Fig. 1) determines mostly the upper
limit for the dwell time for powder patterns in solids.
Dependence on the relative baseline length is depicted
in Fig. 8 for several missing points numbers. Relative
length is the number of data points NX in X region, re-
lated to the overall number of points N. There is clearly
visible the upper limit for the baseline length, condition-
ing correction efficiency for the particular number of
missing points. There is expected no significant efficiency
improvement above this limit.

Region X, besides for the length, is characterized by
its distribution. For the spectrum used consistently in
all simulations in this paper, this distribution is obvi-
ously not uniform: there are two regions located on both
extremes of the frequency band (Fig. 9A), as it is fre-
quent for powder pattern in solids. We have compared
this case to the simulation depicted in Fig. 9B, which
stands for the measurement on the crystalline and ori-
ented sample. Due to peak resolution, and therefore
more uniform distribution of the baseline across the
bandwidth, also larger efficiency g is obtained, as com-
pared to the powder pattern. This result makes reason-
able to expect better efficiency whenever we deal with
well-defined peaks, uniformly distributed along the spec-
trum, such as in liquids, polymers or crystal samples.

6.3. Baseline length, missing points number, and

oversampling

Expected strong dependence for the correction effi-
ciency on the missing points number is confirmed by sim-
ulation (Fig. 10). Distorted spectrum was prepared the
same way as for previous investigations. The same spec-
trum was corrected as a function of missing points num-
ber with the efficiency parameter as the result for one
point in the figure.We have obtained the efficiency depen-
dence on the missing points number for several s/n ratios.
For the established s/n ratio this is visible rapid efficiency
decrease due to the increasing number of missing points.
Also this dependence has its own plateau, which is moved
towards larger nd for larger s/n ratios. It means that high
signal to noise ratio permits for larger number of missing
points at the same correction efficiency.

We have compared the two inverse trends in the
correction efficiency behavior: one connected to the
baseline length, and this related to the missing points
number (represented in Figs. 8 and 10, respectively).
In the presence of the dead time these two trends are
coupled: when we decrease dwell time, in order to



Fig. 10. Efficiency measure g as a function of nd missing points
number. There are depicted trends for several s/n ratios.
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deliver sufficiently large X region in the frequency do-
main, the number ofmissing points increases accordingly.
Magnitudes of these two inverse trends are comparable,
Fig. 11. When we decrease the dwell time in order to deliver
sufficiently large X region for subsequent correction (according to
Fig. 7), the number of missing points increases accordingly. The two
inverse trends are coupled and depicted for several values of s/n ratio.
n0 is the number of missing points we start with in this simulation
(common for all s/n). Trend shows that this is still advantageous to
increase the bandwidth even by the expense of the missing points
number increase.
therefore it is important for the measurement to settle,
which one prevails in this coupling. From Fig. 11 it ap-
pears that bandwidth extension by oversampling is still
advantageous in terms of the correction efficiency. It
means, that correction performed for 400 missing points
per 50,000 data would result in better spectrum than a
similar correction for 4 and 500 data points. This result
is not evident as based on visual inspection or just from
simple reasoning. We conclude, that oversampling is still
advantageous in the correction context.
7. Solution for missing points and constant phase

Our general correction problem is defined by the
expression:

sðtÞ ¼ eiuf ðtÞ � bðtÞ; ð14Þ
where u is the phase distortion parameter and b (t) is the
baseline, both expected to be final results of the correc-
tion. Function f (t) represents distorted signal, s (t) the
desired one. Primary principle given in Eq. (11) yields
the following equation system:

P2nd�1

m¼0

xmAn
m ¼

P
m2X

W R
m ðsÞanm;

ps2 þ qs� p ¼ 0;

8><
>: ð15Þ

where Wm(u) = e�iu Æ Fm and s = tanu. Other auxiliary
substitutions are given by:

xm; Amk; and amm are defined in Eq:ð12Þ:

p ¼ �
X
lm2X

glmF R
m F

I
l;

q ¼
X
lm2X

glmF R
m F

R
l �

X
lm2X

glmF I
mF

I
l;

glm ¼ dlm �
X2nd�1

m;n¼0

ðA�1Þmnanlamm :

The second equation in Eq. (15) is independent and
can be resolved separately. The whole system in Eq.
(15) can be thus explicitly resolved by elimination
(see Appendix A) giving the solution for corrections
xm and phase u:

u ¼ arctanðw�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w2 � 1

p
Þ;

xm ¼
P

m2X
FR
m cosu�F I

m sinu½ �
P2nd�1

k¼0
akmamk

detðAÞ ;

8<
: ð16Þ

where amk is the algebraic complement to Ak
m and the aux-

iliary variable w is given by:

w ¼
P

l;m2X F R
m F

R
l � F I

mF
I
l

� �P2nd�1
n;m¼0 dlm � ðAÞ�1

mna
lnamm

h i
2
P

l;m2XF
R
m F

I
l

P2nd�1
n;m¼0 dlm � ðAÞ�1

mna
lnamm

h i :
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One of the solutions in the square equation gives the
maximum of the functional in Eq. (11) and should be re-
jected. It seems remarkable that the system in Eq. (15) is
always well posed, since matrix A is symmetric, there-
fore always can be diagonalized.
8. Summary for the method

� The primary principle for the presented method is
based on the assumption that system energy can be
minimized separately for the real spectrum in certain
X frequency regions. Such a choice makes the method
immune to tails of the imaginary data.

� Variational principle directly yields the relevant equa-
tions, where the noise concept is naturally incorpo-
rated. Equations have no singularities, being all
linear except for the phase, which the equation is qua-
dratic one. Other approaches assume that the spec-
trum vanishes literally to zero in the selected X
region, leading to an over-determinated linear equa-
tion system, which makes it difficult to analyse the
relevant stability in terms of experimental variables.

� It can be shown (see Appendix A) that the problem is
always well-posed for the presented formulation,
without any singularities in the equation system.
The actual reason for the correction failure might
be the noise presence, in combination with the nature
of the model-free approach. This issue is intrinsic and
irremovable aspect for the problem.

� Simple nature of the equations makes it possible to
obtain expressions for the correction efficiency g in
the closed form. This quantity imposes constraints
for experimental variables in the measurement.

� In this approach noise presence is explicitly irrelevant
for the principle-minimum concept, although it is
important issue when to consider correction efficiency
g.
9. Conclusions

We have shown that the complex problem for both
phase and baseline correction can be resolved in the
closed form. Remarkable is noniterative character of
the result. The final form of the solution in Eq. (16) is
complicated, however expressed in terms of auxiliary
variables becomes convenient for applications. The re-
sult does not depend on data model, is non-iterative
and thus not sensitive to initial guess. The functional ap-
proach and its subsequent minimization (see also
Appendix A) seems to be useful as a template for the fol-
lowing investigations. This in turn might benefit in fur-
ther improvements in terms of criterion choice.
As it is discussed earlier, it is important to realize the
distinction between simple error measure db and the cor-
rection efficiency g. The first one contains no informa-
tion about the corrected spectra, while the second is
related both to the signal and the correction error. Effi-
ciency parameter g is intended to be the measure for the
physical reliability of the resulting spectrum after correc-
tion. Having this measure, it is also possible to optimize
some experimental parameters prior to the measure-
ment. In particular, we have shown that oversampling
is advantageous in this context, even though the dimen-
sionality of the problem increases.

Presented method makes use of that selected data,
where it is presumed the absence of spectral lines in the
real spectrum. This is only some part of the overall infor-
mation available, and we consider this limitation as the
drawback. This is the reason that Linear Prediction
based schemes are expected to be more efficient, when-
ever experimental data follows Lorentzian lineshapes.
We think that additional constraints found for this prob-
lem might be able to improve overall efficiency further.

Another drawback is poor computational efficiency
for geometrical data-independent factor glm. The relevant
calculation is based onmanymultiplications and trigono-
metric functions, which in terms of computational effort
makes it similar to Fourier transformation without FFT
scheme. On the other hand, since its data-independence,
and assuming still the same X partitioning, glm might be
computed in advance and used many times.
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Appendix A

A.1. Notation

� R, I in expressions such as SR, SI denote the real and
imaginary part, respectively.

� Notation such as an and an relates both symbols as
follows: an = (an)*, rising or lowering of the index
makes the respective object conjugated.

� Einstein convention is applied, such as atb
t ¼

P
tatb

t

and AmBm ¼
P

m2XAmBm. Latin indexes (akbk) concerns
summation in the time domain which is always com-
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pact and enumerates missing points, k 2 [0,2nd � 1]
where nd is missing points number. Greek indexes
(such as in Am B

m) concern the summation in the fre-
quency domain within certain X space, which is not
compact in general.

A.2. Distortion measure derivation

The original energy E of the system is disturbed in the
experiment within td time and can be expressed as:

E ¼ Dþ E; ðA:1Þ
where

D ¼
Z td

0

jsðtÞj2 dt;

E ¼
Z T

td

jsðtÞj2 dt ¼
Z T

td

j f ðtÞj2 dt: ðA:2Þ

We can define the energy ratio as the auxiliary variable
v:

v ¼ D
E
¼ D

E þ D
¼ c

cþ 1
; where c ¼ D

E
; ðA:3Þ

which is always bounded:

0 < v < 1: ðA:4Þ
The quantity gamma we call the distortion and we can
obtain its relative error:

½dc�2

c2
¼ ½dD�2

D2
þ ½dE�2

E
2

: ðA:5Þ

Calculation for E and D yields:

½dE�2 ¼ 4r2
t E;

½dD�2 ¼ 4r2
t sms

m þ 4
Xnd�1

n¼0

sRn
� 	2

dbRn
� 	2 þ sIn

� 	2
dbIn
� 	2n o

;

ðA:6Þ
which r2

t is noise standard deviation in the time domain.
Finally, we obtain distortion error:

½dc�2

c2
¼ ½dD�2

D2
þ 4r2

t

E
� ½dD�2

D2
: ðA:7Þ

For increasing data points number N the contribution of
the second component in (23) tends to zero. It is reason-
able to connect this relative error of the distortion to the
efficiency of the correction. Therefore we define the
quantity:

g ¼ 1� dc
c
¼ 1� dD

D

����
���� ðA:8Þ

and call it correction efficiency.
For the confidence level equal to one standard devia-
tion, we have:

vþ dv < 1: ðA:9Þ
Using definition for v in Eq. (A.3) we have:

dv
v

¼ ð1� vÞ dc
c
: ðA:10Þ

Finally one obtains:

0 < g < 1: ðA:11Þ
In a similar way, it is possible to put more demanding
requirements on the result, namely to postulate a higher
confidence level (e.g., equal to three standard devia-
tions). Then we have:

1

3
< g < 1: ðA:12Þ

In conclusion, legal efficiency g values vary form zero to
100%.

A.2.1. Reduced solution
The expression for the absorption mode of the undis-

torted spectrum S is given by:

SR
m ðxÞ ¼ F R

m � ammxm: ðA:13Þ
Factor amm and corrections xm are defined in Eq. (12).
The minimization of SR

m S
mR requires:

o

oxm
SR
m S

mR ¼ 0 ðA:14Þ

and yields the linear equation set:

xmamkamm ¼ xmAk
m ¼ F R

m a
km; ðA:15Þ

where Amk ¼ amm a
mk ¼ Akm is obviously symmetric and

therefore can always be diagonalized. From amk defini-
tion it is that:

A1m ¼ Am1 ¼ 0 ðA:16Þ

and each arbitrary value of x1 satisfies Eq. (A.15). x1 can-
not be obtained by the intrinsic symmetry of the problem
(this is the value of the imaginary spectrum integral). The
true dimensionality for the system is (2nd � 1) ·
(2nd � 1). Instead of excluding the x1 variable and the
respective equation, we substitute A11 = 1 which re-
moves this apparent singularity. The condition in Eq.
(A.14) gives a so-called stationary point which is not
automatically a minimum of SR

m S
mR. Analysis of the ma-

trix Ank which is the second derivative of SR
m S

mR seems a
cumbersome task, since the elements are the sums of
harmonics and at the moment it is not clear how to han-
dle them to prove the condition d2SR

m S
mR > 0 formally.

Instead, we may notice that values of SR
m S

mR are obviously
bounded:

R mR m



G. Stoch, Z. Olejniczak / Journal of Magnetic Resonance 173 (2005) 140–152 151
Value x0 is responsible for the SR offset and we can
make it arbitrarily large (x0 fi ± 1) as well as |SR|-
hence upper bound. Derivatives of higher order than 2
(and equal to zero) are independent of {xm}. The condi-
tion in Eq. (A.15) indicates that only one extremum
point exists. Hence, keeping in mind the property in
Eq. (A.17) and the fact that there are no higher order
stationary points, we conclude that the condition in
Eq. (A.15) determines the minimum of SR

m S
mR.

A.2.2. Standard deviation for reduced solution

Having the solution in Eq. (A.15) expressed as:

xm ¼ ðA�1Þmn F R
m a

nm ðA:18Þ

and having that xm = xm(FR) is the function of data, we
get the standard deviation [dxm]2:

½dxm�2 ¼ oxm

oF R
m

����
����
2

dF R
m

� 	2 ¼ r2
f

X
m

½Cmm�2; ðA:19Þ

where Cmm ¼ ðA�1Þmn anm and rf = dF is the noise variance
and finally:

½dxm�2 ¼ r2
f ½Cm�2; ðA:20Þ

where ½Cm�2 ¼
P

m½Cmm�2.
This deviation is noise-dependent and could measure

the error of the correction xm. Since xm is linearly depen-
dent on F in Eq. (A.18), the derived expression in Eq.
(A.19) holds also for larger rf values.

A.2.3. General solution

The problem for the signal with the phase artifact and
missing points is represented by the equation:

SmðxÞ ¼ e�iuF m � ammxm ¼ W mðuÞ � ammxm; ðA:21Þ

where Wm(u) = e�iu Æ Fm. Minimization of SR
m S

mR yields
the linear equation set:

xmAn
m ¼ W R

m ðuÞanm ðA:22Þ

due to derivation over xm. The remaining derivation
over u leads to:

�ðW R
m � xnanmÞW Im ¼ 0: ðA:23Þ

Since the relationship: xm ¼ ðA�1Þmk W R
l a

kl, Eq. (A.23)
becomes:

�glmW
RlW Im ¼ 0; ðA:24Þ

where

glm ¼ dlm � ðA�1Þmnanlamm ðA:25Þ

is data-independent symmetric tensor, dlm is the Kro-
necker symbol. Eq. (A.24) is the orthogonality relation
in the frequency subspace, characterized by tensor
g = g (X). In the absence of missing points (glm = dlm)
Eq. (A.24) solves pure phase correction problem. Gen-
eral issue results finally in the square equation for the
unknown s ¼ tanu:

ps2 þ qs� p ¼ 0; ðA:26Þ
where

p ¼ �glmF R
m F

I
l;

q ¼ glmF R
m F

R
l � glmF I

mF
I
l;

D ¼ q2 þ 4p2: ðA:27Þ
It can be proven that quantity D is independent of u.
Due to D P 0 the solution always exists. From Viete�s
formula it is seen that s1 Æ s2 = �1, thus:

u1 ¼ u2 � 90� ðA:28Þ
assuming that u2 > u1 and u 2 (�90�, +90�) domain.

Finally, we end up with the linear equations set in Eq.
(A.22) together with Eq. (A.26). Both form the complete
system for desired corrections and phase {xm,u}:

xmAn
m ¼ W R

m ðuÞanm;
ps2 þ qs� p ¼ 0:

(
ðA:29Þ

Since the square equation is independent of xm one can
solve it separately and substitute the result u = arc-
tan(s) into WR(u). Then we solve the linear equation
set, and this way system in Eq. (A.29) is resolved. Hav-
ing the substitution xm ¼ ðA�1Þmk W R

l a
kl we may reduce

the minimization of SR
m S

mR to a one-dimensional prob-
lem, represented by the second equation in Eq. (A.29).
Now can be determined the condition for the
minimum:

d2SR
m S

mRðsÞ > 0: ðA:30Þ
Providing in Eq. (A.26) that s1 < s2, the first derivative
[G2(s)] 0 = �ps2�qs + p changes sign from ‘‘�’’ to ‘‘+’’
in s = s1, when p < 0, and in s = s2 when p > 0. Finally
we have:

p < 0; then : s1 ¼ min :; s2 ¼ max;

p > 0; then : s1 ¼ max :; s2 ¼ min;

(
ðA:31Þ

which is the condition for the minimum.

A.2.4. Standard deviation for general solution

From Eq. (A.22) it follows that [dxm]2 is expressed
by:

½dxm�2 ¼
X
m

½Cmm�2 dSR
m

� 	2
; ðA:32Þ

where Cmm is defined in Eq. (A.19). Finally, we get:

½dxm�2 ¼ r2
f ½Cm�2 þ ðduÞ2½Dm�2; ðA:33Þ

where it is defined: ½Dm�2 ¼
P

m½Cmm�2½W I
m�
2. The [dxm]2 is

charged by additional error connected to the phase stan-
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dard deviation [du]2 Prior to get this error, compute [dt]2

from expression in Eq. (A.26):

½ds�2 ¼ s2

c2 þ 1
½dc�2; ðA:34Þ

where c = q/2p and:

½dc�2 ¼ 1

p2
1

4
½dq�2 þ c2½dp�2

� 

: ðA:35Þ

The [dp]2 and [dq]2 deviations can be derived from the
definitions of p and q in Eq. (A.26). The differentiation
goes over FI and FR, namely:

½dp�2 ¼ r2
f

X
m

op

oF R
m

����
����
2

þ op

oF I
m

����
����
2

( )
: ðA:36Þ

Since glm is data-independent, after differentiation we
get:

½dp�2 ¼ r2
f

X
m

gmlF R
l

� �2

þ gmlF I
l

� �2
� 


: ðA:37Þ

A similar calculation for [dq]2 yields:

½dq�2 ¼ 4 	 ½dp�2 ðA:38Þ
and finally [dc]2 = {1 + c2}[dp]2/p2. Now we get the
expression for [ds]2:

½ds�2 ¼ s2½dp=p�2 ðA:39Þ
and hence for [du]2:

½du�2 ¼ s2

ðs2 þ 1Þ2
dp
p

� �2
¼ ½dp�2

D
ðA:40Þ

and finally:

½du�2 ¼
r2
f

D

X
m

gmlF R
l

� �2

þ gmlF I
l

� �2
� 


: ðA:41Þ

Note that expression Eq. (A.41) is independent of u.
From that we get final expression for [dxm]2:

½dxm�2 ¼ r2
f ½Cm�2 þ ½Dm�2

D

X
m

½ðgmlF R
l Þ

2 þ ðgmlF I
lÞ

2�
( )

:

ðA:42Þ
Since [du]2 is entirely determined by the experimental
data F and the X choice, the Eqs. (A.41) and (A.42)
are sufficient to obtain the respective errors. Both of
them do not depend on u, despite of one square equa-
tion in the system Eq. (A.29).
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